首页> 外文OA文献 >Super-Linear Gate and Super-Quadratic Wire Lower Bounds for Depth-Two and Depth-Three Threshold Circuits
【2h】

Super-Linear Gate and Super-Quadratic Wire Lower Bounds for Depth-Two and Depth-Three Threshold Circuits

机译:深度二的超线性门和超二次线下界   和深度 - 三个阈值电路

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In order to formally understand the power of neural computing, we first needto crack the frontier of threshold circuits with two and three layers, a regimethat has been surprisingly intractable to analyze. We prove the firstsuper-linear gate lower bounds and the first super-quadratic wire lower boundsfor depth-two linear threshold circuits with arbitrary weights, and depth-threemajority circuits computing an explicit function. $\bullet$ We prove that for all $\epsilon\gg \sqrt{\log(n)/n}$, thelinear-time computable Andreev's function cannot be computed on a$(1/2+\epsilon)$-fraction of $n$-bit inputs by depth-two linear thresholdcircuits of $o(\epsilon^3 n^{3/2}/\log^3 n)$ gates, nor can it be computed with$o(\epsilon^{3} n^{5/2}/\log^{7/2} n)$ wires. This establishes an average-case``size hierarchy'' for threshold circuits, as Andreev's function is computableby uniform depth-two circuits of $o(n^3)$ linear threshold gates, and byuniform depth-three circuits of $O(n)$ majority gates. $\bullet$ We present a new function in $P$ based on small-biased sets, whichwe prove cannot be computed by a majority vote of depth-two linear thresholdcircuits with $o(n^{3/2}/\log^3 n)$ gates, nor with $o(n^{5/2}/\log^{7/2}n)$wires. $\bullet$ We give tight average-case (gate and wire) complexity results forcomputing PARITY with depth-two threshold circuits; the answer turns out to bethe same as for depth-two majority circuits. The key is a new random restriction lemma for linear threshold functions. Ourmain analytical tool is the Littlewood-Offord Lemma from additivecombinatorics.
机译:为了正式理解神经计算的能力,我们首先需要用两层和三层来破解阈值电路的边界,这种机制在分析时令人惊讶地难以处理。我们证明了具有任意权重的深度两个线性阈值电路的第一超线性门下界和第一超二次金属线的下界,以及计算显式函数的深度-绝大部分电路。 $ \ bullet $我们证明,对于所有$ \ epsilon \ gg \ sqrt {\ log(n)/ n} $,线性时间可计算的Andreev函数不能在$(1/2 + \ epsilon)$分数上计算$ o $位输入由深度两个线性阈值电路$ o(\ epsilon ^ 3 n ^ {3/2} / \ log ^ 3 n)$门组成,也不能用$ o(\ epsilon ^ {3} n ^ {5/2} / \ log ^ {7/2} n)$根导线。这为阈值电路建立了平均情况的``大小层次'',因为Andreev的函数可以通过$ o(n ^ 3)$线性阈值门的均一深度二电路和$ O(n )$多数票。 $ \ bullet $我们基于小偏置集在$ P $中提供了一个新函数,我们证明无法通过深度为2的线性阈值电路以$ o(n ^ {3/2} / \ log ^的多数表决来计算该函数3 n)$门,也没有$ o(n ^ {5/2} / \ log ^ {7/2} n)$线。 $ \ bullet $我们给出紧密的平均情况(门和线)复杂度结果,用于使用深度为2的阈值电路计算奇偶性;答案与深度二多数电路相同。关键是线性阈值函数的新随机限制引理。我们主要的分析工具是additivecombinatorics的Littlewood-Offord Lemma。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号